Chebyshev Polynomials in Several Variables and the Radial Part of the Laplace-beltrami Operator
نویسنده
چکیده
Chebyshev polynomials of the first and the second kind in n variables z. , Zt , ... , z„ are introduced. The variables z, , z-,..... z„ are the characters of the representations of SL(n + 1, C) corresponding to the fundamental weights. The Chebyshev polynomials are eigenpolynomials of a second order linear partial differential operator which is in fact the radial part of the Laplace-Beltrami operator on certain symmetric spaces. We give an explicit expression of this operator in the coordinates zi, z2 , ... , zn and then show how many results in the literature on differential equations satisfied by Chebyshev polynomials in several variables follow immediately from well-known results on the radial part of the Laplace-Beltrami operator. Related topics like orthogonality, symmetry relations, generating functions and recurrence relations are also discussed. Finally we note that the Chebyshev polynomials are a special case of a more general class of orthogonal polynomials in several variables.
منابع مشابه
Using Chebyshev polynomial’s zeros as point grid for numerical solution of nonlinear PDEs by differential quadrature- based radial basis functions
Radial Basis Functions (RBFs) have been found to be widely successful for the interpolation of scattered data over the last several decades. The numerical solution of nonlinear Partial Differential Equations (PDEs) plays a prominent role in numerical weather forecasting, and many other areas of physics, engineering, and biology. In this paper, Differential Quadrature (DQ) method- based RBFs are...
متن کاملUncertainty Principles on Compact Riemannian Manifolds
Based on a result of Rösler and Voit for ultraspherical polynomials, we derive an uncertainty principle for compact Riemannian manifolds M . The frequency variance of a function in L(M) is therein defined by means of the radial part of the Laplace-Beltrami operator. The proof of the uncertainty rests upon Dunkl theory. In particular, a special differential-difference operator is constructed whi...
متن کاملRichardson and Chebyshev Iterative Methods by Using G-frames
In this paper, we design some iterative schemes for solving operator equation $ Lu=f $, where $ L:Hrightarrow H $ is a bounded, invertible and self-adjoint operator on a separable Hilbert space $ H $. In this concern, Richardson and Chebyshev iterative methods are two outstanding as well as long-standing ones. They can be implemented in different ways via different concepts.In this paper...
متن کاملSolving singular integral equations by using orthogonal polynomials
In this paper, a special technique is studied by using the orthogonal Chebyshev polynomials to get approximate solutions for singular and hyper-singular integral equations of the first kind. A singular integral equation is converted to a system of algebraic equations based on using special properties of Chebyshev series. The error bounds are also stated for the regular part of approximate solut...
متن کاملPost-buckling response of thin composite plates under end-shortening strain using Chebyshev techniques
In this paper, a method based on Chebyshev polynomials is developed for examination of geometrically nonlinear behaviour of thin rectangular composite laminated plates under end-shortening strain. Different boundary conditions and lay-up configurations are investigated and classical laminated plate theory is used for developing the equilibrium equations. The equilibrium equations are solved dir...
متن کامل